Bridging Planning and
Reasoning in Natural
Language with
Foundational Models

Brief introduction to Al Planning
Shirin Sohrabi



Planning in the Era of Language Models

» * Introduction: What is Planning

* What kind of planning problem do | have aka Planning Formalisms
* What kind of solutions am | looking for aka Computational Problems
* How can | describe my planning problem aka Planning Languages

* Solving Planning Problems
* Pre-LLM era
* Early LLM era
* Modern LLM era



What is Al Planning

/ ACTIONS l =

Q*gjﬁ%

IF/THEN

https://www.odtap.com/2018/10



Al Planning is everywhere

Source: https://www.livemint.com/Opinion/tijzm8flw2RY98Jvdm8LzJ/Opinion--Cyber-security-a-complex-behaviour-problem.html
4 Source: https://www.rigzone.com/news/schlumberger_in_400mm_deal_to_sell_drilling_assets-15-may-2019-158842-article/



Planning Problem

Mathematical Model: S = (S, 59, Sg, A, f, ) l

A solution is a sequence of applicable actions that maps sg into
Sa, and it is optimal if it minimizes sum of action costs SuCe: S ->25%A

finite and discrete state space S
a known initial state sg € S
a set Sg C S of goal states

The 24 Game is a mathematical card game in which the objective
is to find a way to manipulate four integers so that the end result is 24.
The game is played with a list of four numbers, and the player must use

all four numbers exactly once, using any combination of addition,
subtraction, multiplication, or division, to arrive at the number 24.

actions A(s) C A applicable in each s € S

a deterministic transition function

s’ = f(a,s) for a € A(s)

non-negative action costs c(a, s)

Planning Language
types objects
predicates initial state
actions N goal
preconditions
effects

U

Black Box

7

goal: S -> {T,F}




Planning Formalisms

e Classical planning: initial state is known, action dynamics is deterministic and instantaneous, discrete and
finite state space, flat hierarchies, hard goals that must be achieved

* Numeric Planning: numeric state variables, infinite state spaces

* Net-benefit/oversubscription planning: utility of states, possibly no hard goals

e Conformant planning: initial state is uncertain

* Probabilistic planning: action dynamics is probabilistic, and state spaces do not have to be discrete or finite
* Non-deterministic planning (ND): action dynamics is non-deterministic

e Temporal Planning: actions have durations and temporal constraints

» Hierarchical Task Network (HTN): initial state/goal are task networks (a set of tasks and constraints), with

recursive decomposition of high-level tasks into lower-level sub-tasks



Computational Problems

Classical/Numeric Planning

Agile planning: find a plan, quicker is better

Satisficing planning: find a plan, cheaper plans a better

Cost-optimal planning: find a plan that minimizes summed operator cost
Top-k planning: find k plans such that no cheaper plans exist

Top-quality planning: find all plans up to a certain cost

Diverse planning: variety of problems, aiming at obtaining diverse set of plans, considering plan quality as well

Beyond Classical Planning (examples)

Net-benefit planning: find a plan that minimizes the difference between utility of end state and summed operator cost
Oversubscription planning: find a plan that maximizes the utility of end state, bounding summed operator cost
FOND planning: find a policy that guarantees eventual goal achievement under fairness of outcomes assumption

PO Probabilistic planning: find a policy that maximizes expected utility



Representing the Knowledge

(Example: PDDL)

(define (problem mixed)
(:domain miconic)
(:objects p@ pl p2 p3 f@ f1 f2 f3 f4 f5 fe f7)

(:init

(passenger p@)(passenger pl)(passenger p2)(passenger p3)

(floor
(floor

(above
(above
(above
(above
(above
(above
(above

f@)(floor f1)(floor f2)(floor f3)(floor f4)
f5)(floor f6)(floor f7)

fo
fo
f1
f1
f2
f3
f4

f1)(above
f5)(above
f3)(above
f7)(above
f6)(above
f6)(above
f7)(above

fo
fo
fi
f2
f2
f3
f5

f2)(above
f6)(above
f4)(above
f3)(above
f7)(above
f7)(above
f6)(above

fo
fo
f1
2
f3
f4
f5

(origin p@ f@)(destin p@ f5)(origin
(origin p2 f@)(destin p2 f7)(origin

(lift-at f0))

(:goal (and
(served p@)(served pl)(served p2)(served p3))))

f3)(above
f7)(above
f5)(above
f4)(above
f4)(above
f5)(above
f7)(above

pl f7)(destin pl f4)
p3 f1)(destin p3 f6)

fo
f1
f1
f2
£3
fa
f6

f4)
f2)
f6)
f5)
f5)
f6)
f7)

http://editor.planning.domains/

(define (domain miconic)
(:requirements :strips)

(:predicates

(Corigin ?person ?floor)
(floor ?floor)
(passenger ?passenger)
(destin ?person ?floor)
(above ?floorl ?floor2)
(boarded ?person)
(served 7person)
(lift-at ?floor))

(:action board
:parameters (?f ?p)
:precondition (and (floor ?f) (passenger ?p)(lift-at ?f) (origin 7p 7f))
:effect (boarded 7p))

(:action depart
:parameters (?f ?p)
:precondition (and (floor ?f) (passenger ?p) (lift-at ?f) (destin 7p 7f)
(boarded 7p))
:effect (and (not (boarded 7p))
(served 7p)))

(:action up
:parameters (?f1 ?f2)
:precondition (and (floor ?f1) (floor ?f2) (lift-at 7f1) (above ?fl 7f2))
ceffect (and (lift-at 7f2) (not (lift-at 7f1))))

(:action down
:parameters (?f1 7f2)
:precondition (and (floor ?f1) (floor ?f2) (lift-at ?f1) (above 7f2 7f1))
ceffect (and (lift-at 7f2) (not (lift-at 7f1)))))

(up fo f1)

(up f1£7)
(board f7 pr1)
(down f7 f4)
(depart f4 p1)
(down f4 fo)
(board fo po)
(up fo fs)
(depart f5 po)
(up fs5 f6)
(down f6 fo)
(board fo p2)
(up fo f7)
(depart f7 p2)
(down f7 f1)
(board f1 p3)

(up f1£6)

(depart f6 p3)



Planning in the Era of Language Models

* Introduction:What is Planning
* What kind of planning problem do | have aka Planning Formalisms

* What kind of solutions am | looking for aka Computational Problems
* How can | describe my planning problem aka Planning Languages

* Solving Planning Problems
* Pre-LLM era
* Early LLM era
* Modern LLM era



General Framework / Problems

* Model acquisition — how to

derive / learn the planning
model domain knowledge

* Planning — how to efficiently l Pre-processing Adjust model

. . ith feedback
find solutions in the model -

Plannlng Model

— -
Post-

processmg

e Execution — how to
efficiently execute model
solutions in the environment




Solving Classical PDDL Planning

init §‘§-§‘~_ \\\

o) e () ()

Search algorithms

HC/LNS/SA/Tabu$S

BFS/BFWS/DFS/IDDFS
A*/K*/wA*/GBFS/MCTS

11



Major Planners/tools

* Fast-Forward (FF): classical satisficing, numeric, conformant, contingent (Hoffmann
& Nebel, 2001)

* Fast Downward: classical, cost-optimal, satisficing, agile, cost-bouned, OSP, FOND,
probabilistic, temporal (Helmert et al., 2006)

* SHOP2: HTN planning (Nau et al., 2003)

* LPG: classical, satisficing, numeric, temporal, diverse (Gerevini & Serina 2002)
* FOND planner PRP (Muise et al., 2012,2014)

* OSP planners (Katz & Keyder 2019, Katz & Speck 2021)
* Top-k planners: K* (Katz et al., 2018), SymK (Speck et al., 2020)

* Forbid-iterative collection of planners for top-k, top-quality, diverse (Katz &
Sohrabi 2020, Katz et al., 2020)



Planning in the Era of Language Models

* Introduction:What is Planning
* What kind of planning problem do | have aka Planning Formalisms

* What kind of solutions am | looking for aka Computational Problems
* How can | describe my planning problem aka Planning Languages

* Solving Planning Problems
* Pre-LLM era
* Early LLM era
* Modern LLM era

13



Solving NL/PDDL Planning Problems

Most of the focus since 2022

KI.LM as Planner \

Silver et al. FMDM@NeurlPS 2022
Valmeekam et al. NeurlPS 2023

Observation

Planning/search

Kambhampati et al. ICML 2024 Action/plan problem in NL
Bohnet et al. Arxiv 2024 —>

Zhao et al. ICLR 2025 k

Yaoetal. ICLR 2023 / LLM as search components \ 2

Xu et al. Arxiv 2023 P G@

Hao et al. EMNLP 2023
I r
Yao et al. NeurlPS 2023

: =
Shinn et al. NeurlPS 2023
—>
Zhou et al. ICML 2024 - -

Sel et al. ICML 2024 K Search algorithm
Besta et al. AAAI 2024

Observation

<

Action/plan
-




Sound?

Complete?

Optimal?

No!
No!
No!

Computational complexity?
* Hard to measure. Most expensive operation is LLM call
* Computational effort vs. state space portion explored

What are the properties of these algorithms?

If validator exists, we can make it sound

24Game Crossword BlocksWorld PrOntoQA
Approach | Complexity | States Calls | States Calls | States Calls | States Calls
10 O(D) 0.02% 1362 | 4e-9% 20| 05% 502 4% 4000
CoT O(D) 0.02% 1362 | 4e-9% 20| 05% 502 4% 4000
ReAct O(LD) 0.07% 4086 | 4e-8% 200 | 7.8% 8032 | 24.6% 24K
ReWOO | O(LD) 0.07% 4086 | 4e-8% 200 | 7.8% 8032 | 24.6% 24K
RAP O(TbLD) 33% 245K | 2e-6% 12K | 388% 482K | 1229% 1.44M
ToT O(bmLD) 1.6% 102K | le-6% 5K | 194% 201K | 615% 600K
GoT O(bLD) 03% 20K | 2e-7% IK| 39% 40K | 122% 120K
Reflection | O(LTD) 0.7% 68K | 4e-7% 24K |77.6% 90K | 245% 320K
LATS O(TbLD) 33% 286K | 2e-6% 14K | 388% 562K | 1229% 1.68M

15
Katz et al, NeurlPS 2024, Thought of Search: Planning with Language Models Through The Lens of Efficiency




Why did it work in the first place?

Room A Room B (pick 01 A'L)
(pick 02 AR) Room B
.. (move A B) O
o) (dropol B L) @
(drop 02 B R)
(9) (move B A)
(pick 03 A L)
(pick 04 A R) (0]
(move A B) 0]
(drop o3 B L)
(drop 04 B R)
Room C
Room A Room B (pick 01 A L)
.. (pick 02 AR)
(move A B) .
°® (drop o1 B 1) Conclusions (see [1]):
0.. (drop 02 B R) * Be aware of instance generator limitations
@) (move B A)

) * Show generalization outside of training set

(drop 07 B L) * Show performance on multiple domains
(drop 08 B R)

[1] Katz et al, Arxiv 2025, Make Planning Research Rigorous Again!



Why did it work in the first place?

(pickup ?x)
(putdown ?x)
(stack ?x ?y)
(unstack ?x ?y)

B

D

0
(o]

Initial state Goal

How do plans look like?

pickup -> stack

stack -> unstack | pickup
unstack -> stack | putdown
putdown -> unstack | pickup

What does it mean to restrict || < 10?

* At most 5 blocks are moved (even if the instance
has 100s of blocks)

* Total of 1331 possible plan patterns

* When trained on a large collection of instances,
most (all?) possible plan patterns appear in the
training set

Conclusions (see [1]):

* There are many planning domains out there and
BlocksWorld is among the simplest

* Show generalization outside of training set

* Show performance on multiple domains

[1] Katz et al, Arxiv 2025, Make Planning Research Rigorous Again!

17



Planning in the Era of Language Models

* Introduction:What is Planning
* What kind of planning problem do | have aka Planning Formalisms

* What kind of solutions am | looking for aka Computational Problems
* How can | describe my planning problem aka Planning Languages

* Solving Planning Problems

* Pre-LLM era
* Early LLM era

» * Modern LLM era

18



Katz et al, NeurlPS 2024

Solving NL/PDDL Planning Problems
Environment
Cao et al, OWA@NeurlPS 2024

Observation
Tuisov et al, Arxiv 2024 Search gzl
algorithm

Action/plan
Correa et al, NeurlPS 2025

Planning/search
problem in NL




Solving NL/PDDL Planning Problems

Katz et al, NeurlPS 2024 LLM as search components generator .
Search < Observation
Cao et al, OWA@NeurIPS 2024 components = Lm :
Tuisov et al, Arxiv 2024 code (black Search gla=N Action/plan >
Correa et al, NeurlPS 2025 o sl algorithm —P“ .
Planning/search
24Game Crossword BlocksWorld PrOntoQA prObIem in NL
Approach | Complexity | States Calls | States Calls | States Calls | States Calls
10 0O(D) 0.02% 1362 | 4¢-9% 20 | 0.5% 502 4% 4000
CoT o(D) 0.02% 1362 |4e-9% 20| 05% 502 4% 4000
ReAct O(LD) 0.07% 4086 | 4e-8% 200 | 7.8% 8032 | 24.6% 24K
ReWOO | O(LD) 0.07% 4086 | 4c-8% 200| 7.8% 8032| 24.6% 24K
RAP O(TbLD) 3.3% 245K | 2¢-6% 12K | 388% 482K | 1229% 1.44M
ToT O(bmLD) 1.6% 102K | 1e-6%  SK | 194% 201K | 615% 600K
GoT O(bLD) 03% 20K | 2¢-7% 1K | 39% 40K | 122% 120K
Reflection | O(LTD) 0.7% 68K | 4e-7% 24K |77.6% 90K | 245% 320K O
LATS O(TbLD) 3.3% 286K | 2¢-6% 14K | 388% 562K | 1229% 1.68M
[Tos (ours) [ O(D) 27.0% 2.2 | 3c-4% 38| 125% 38| 175% 2.6] G@
24 Game PrOntoQA Sokoban Crossword BlocksWorld
GPT-40-mini 8.8 438 6.4 9.6 10.0
E GPT-40 34 2.6 22 5.8 2.0
% Llama3.1-405b 34 2.0 2.6 4.0 3.2
S, Llama3.1-70b 7.4 2.0 8.2 6.2 5.8
DeepSeek-CoderV2 4.4 2.0 2.8 6.6 4.2
ToS GPT-4 22 26 NA 38 38




Solving NL/PDDL Planning Problems
4 N

Katz et al, NeurlPS 2024 LLM as search components generator .
Search < @ Observation
¢

Cao et al, OWA@NeurlPS 2024 O T :

Tuisov et al, Arxiv 2024 code (black Search et Action/plan

Correa et al, NeurlPS 2025 box model) algorithm —7%

____________________________________________________________________________________________________________ Planning/search
problem in NL

Observatlon

Silver et al, AAAI 2024 L el
! . Policy code LLM
Hodel, BSc Thesis 2024 EerielneEast Actlon/plan
i planner)

Stein et al, Arxiv 2025

Guanetal,NeurlPS2023 AT mnen oo~
Gestrin et al, Arxiv 2024 < LLM as PDDL generator Observation 0O
—
Oswald et al, ICAPS 2024 High level Action/plan
lanning model Off-the-shelf P
Huang et al, AAAI 2025 P an?;r;gDrBo e > @ olanner > —¥ G@

Tantakoun et al, ACL Findings 2025




Links and references

Tutorial link:

* https://planning-llm-era.github.io/, Planning in the Era
of Language Models, NeurlPS 2025

* https://aiplanning-tutorial.github.io/, Al Planning:
Theory and Practice, AAAI 2022

* https://mp-tutorial.github.io/, Finding multiple plans
for classical planning problems, ICAPS 2024

Git with references

Planners available on github:
https://github.com/aibasel/downward st 8 ste.ste.see.,
https://github.com/IBM/forbiditerative @)
https://github.com/IBM/kstar fesdel
https://github.com/speckdavid/symk

ICAPS 2026 Summer School Al Planning
June 22-25, 2026 Community Git *


https://planning-llm-era.github.io/
https://planning-llm-era.github.io/
https://planning-llm-era.github.io/
https://planning-llm-era.github.io/
https://planning-llm-era.github.io/
https://planning-llm-era.github.io/
https://aiplanning-tutorial.github.io/
https://aiplanning-tutorial.github.io/
https://aiplanning-tutorial.github.io/
https://aiplanning-tutorial.github.io/
https://mp-tutorial.github.io/
https://mp-tutorial.github.io/
https://mp-tutorial.github.io/
https://mp-tutorial.github.io/
https://github.com/IBM/forbiditerative
https://github.com/IBM/forbiditerative
https://github.com/IBM/kstar
https://github.com/speckdavid/symk

