
Bridging Planning and
Reasoning in Natural

Language with
Foundational Models

Brief introduction to AI Planning
Shirin Sohrabi

• Introduction: What is Planning
• What kind of planning problem do I have aka Planning Formalisms
• What kind of solutions am I looking for aka Computational Problems
• How can I describe my planning problem aka Planning Languages

• Solving Planning Problems
• Pre-LLM era
• Early LLM era
• Modern LLM era

2

What is AI Planning

3

https://www.odtap.com/2018/10

AI Planning is everywhere

4

Current routes
for trucks

New Package
pick-up request

Modified routes
for trucks

Estimated pick-up
/ delivery times for
packages

Input

Output

4
Source: https://www.livemint.com/Opinion/tijzm8fIw2RY98Jvdm8LzJ/Opinion--Cyber-security-a-complex-behaviour-problem.html
Source: https://www.rigzone.com/news/schlumberger_in_400mm_deal_to_sell_drilling_assets-15-may-2019-158842-article/

Planning Language

predicates
objectstypes

actions
preconditions
effects

initial state

goal

Black Box

succ: S ->2SxA

goal: S -> {T,F}

The 24 Game is a mathematical card game in which the objective
 is to find a way to manipulate four integers so that the end result is 24.
The game is played with a list of four numbers, and the player must use

all four numbers exactly once, using any combination of addition,
subtraction, multiplication, or division, to arrive at the number 24.

Mathematical Model:

Planning Problem

5

Planning Formalisms

• Classical planning: initial state is known, action dynamics is deterministic and instantaneous, discrete and
finite state space, flat hierarchies, hard goals that must be achieved

• Numeric Planning: numeric state variables, infinite state spaces

• Net-benefit/oversubscription planning: utility of states, possibly no hard goals

• Conformant planning: initial state is uncertain

• Probabilistic planning: action dynamics is probabilistic, and state spaces do not have to be discrete or finite

• Non-deterministic planning (ND): action dynamics is non-deterministic

• Temporal Planning: actions have durations and temporal constraints

• Hierarchical Task Network (HTN): initial state/goal are task networks (a set of tasks and constraints), with

recursive decomposition of high-level tasks into lower-level sub-tasks

6

Computational Problems

• Agile planning: find a plan, quicker is better

• Satisficing planning: find a plan, cheaper plans a better

• Cost-optimal planning: find a plan that minimizes summed operator cost

• Top-k planning: find k plans such that no cheaper plans exist

• Top-quality planning: find all plans up to a certain cost

• Diverse planning: variety of problems, aiming at obtaining diverse set of plans, considering plan quality as well

Classical/Numeric Planning

Beyond Classical Planning (examples)

• Net-benefit planning: find a plan that minimizes the difference between utility of end state and summed operator cost

• Oversubscription planning: find a plan that maximizes the utility of end state, bounding summed operator cost

• FOND planning: find a policy that guarantees eventual goal achievement under fairness of outcomes assumption

• PO Probabilistic planning: find a policy that maximizes expected utility

7

Representing the Knowledge
(Example: PDDL)

Domain

Problem

Sample
Plan

Domain file

Planhttp://editor.planning.domains/

• Introduction: What is Planning
• What kind of planning problem do I have aka Planning Formalisms
• What kind of solutions am I looking for aka Computational Problems
• How can I describe my planning problem aka Planning Languages

• Solving Planning Problems
• Pre-LLM era
• Early LLM era
• Modern LLM era

9

General Framework / Problems

10

• Model acquisition – how to
derive / learn the planning
model

• Planning – how to efficiently
find solutions in the model

• Execution – how to
efficiently execute model
solutions in the environment

Solving Classical PDDL Planning PDDL Planner plans

….

Search algorithms

BFS/BFWS/DFS/IDDFS

A*/K*/wA*/GBFS/MCTS

HC/LNS/SA/TabuS

11

Major Planners/tools

• Fast-Forward (FF): classical satisficing, numeric, conformant, contingent (Hoffmann
& Nebel, 2001)
• Fast Downward: classical, cost-optimal, satisficing, agile, cost-bouned, OSP, FOND,

probabilistic, temporal (Helmert et al., 2006)
• SHOP2: HTN planning (Nau et al., 2003)
• LPG: classical, satisficing, numeric, temporal, diverse (Gerevini & Serina 2002)
• FOND planner PRP (Muise et al., 2012, 2014)
• OSP planners (Katz & Keyder 2019, Katz & Speck 2021)
• Top-k planners: K* (Katz et al., 2018), SymK (Speck et al., 2020)
• Forbid-iterative collection of planners for top-k, top-quality, diverse (Katz &

Sohrabi 2020, Katz et al., 2020)
….

12

• Introduction: What is Planning
• What kind of planning problem do I have aka Planning Formalisms
• What kind of solutions am I looking for aka Computational Problems
• How can I describe my planning problem aka Planning Languages

• Solving Planning Problems
• Pre-LLM era
• Early LLM era
• Modern LLM era

13

Environment

Planning/search
problem in NL

Solving NL/PDDL Planning Problems
Most of the focus since 2022

Action/plan

Observation

LLM as search components

Search algorithm

Action/plan

Observation
LLM as PlannerSilver et al. FMDM@NeurIPS 2022

Valmeekam et al. NeurIPS 2023

Kambhampati et al. ICML 2024

Bohnet et al. Arxiv 2024

Zhao et al. ICLR 2025

Yao et al. NeurIPS 2023

Zhou et al. ICML 2024
Sel et al. ICML 2024
Besta et al. AAAI 2024

Yao et al. ICLR 2023
Xu et al. Arxiv 2023
Hao et al. EMNLP 2023

Shinn et al. NeurIPS 2023

What are the properties of these algorithms?

Katz et al, NeurIPS 2024, Thought of Search: Planning with Language Models Through The Lens of Efficiency

Computational complexity?
• Hard to measure. Most expensive operation is LLM call
• Computational effort vs. state space portion explored

If validator exists, we can make it sound
No!

Sound?
Complete?
Optimal? No!

No!

15

Why did it work in the first place?
(pick o1 A L)
(pick o2 A R)
(move A B)
(drop o1 B L)
(drop o2 B R)
(move B A)
(pick o3 A L)
(pick o4 A R)
(move A B)
(drop o3 B L)
(drop o4 B R)

(pick o1 A L)
(pick o2 A R)
(move A B)
(drop o1 B L)
(drop o2 B R)
(move B A)
…
(drop o7 B L)
(drop o8 B R)

Conclusions (see [1]):
• Be aware of instance generator limitations
• Show generalization outside of training set
• Show performance on multiple domains

[1] Katz et al, Arxiv 2025, Make Planning Research Rigorous Again! 16

Why did it work in the first place?

A

B

CD

A

B

C

Initial state Goal

(pickup ?x)
(putdown ?x)
(stack ?x ?y)
(unstack ?x ?y)

What does it mean to restrict |𝝅| ≤ 10?

• At most 5 blocks are moved (even if the instance
has 100s of blocks)

• Total of 1331 possible plan patterns
• When trained on a large collection of instances,

most (all?) possible plan patterns appear in the
training set

How do plans look like?
• pickup -> stack
• stack -> unstack | pickup
• unstack -> stack | putdown
• putdown -> unstack | pickup

Conclusions (see [1]):
• There are many planning domains out there and

BlocksWorld is among the simplest
• Show generalization outside of training set
• Show performance on multiple domains

[1] Katz et al, Arxiv 2025, Make Planning Research Rigorous Again! 17

• Introduction: What is Planning
• What kind of planning problem do I have aka Planning Formalisms
• What kind of solutions am I looking for aka Computational Problems
• How can I describe my planning problem aka Planning Languages

• Solving Planning Problems
• Pre-LLM era
• Early LLM era
• Modern LLM era

18

Environment

Planning/search
problem in NL

Solving NL/PDDL Planning Problems

Katz et al, NeurIPS 2024
Cao et al, OWA@NeurIPS 2024
Tuisov et al, Arxiv 2024
Correa et al, NeurIPS 2025

Action/plan

ObservationLLM as search components generator
Search

components
code (black
box model)

Search
algorithm

19

Environment

Planning/search
problem in NL

Solving NL/PDDL Planning Problems

Katz et al, NeurIPS 2024
Cao et al, OWA@NeurIPS 2024
Tuisov et al, Arxiv 2024
Correa et al, NeurIPS 2025

Action/plan

ObservationLLM as search components generator
Search

components
code (black
box model)

Search
algorithm

20

Environment

Planning/search
problem in NL

Solving NL/PDDL Planning Problems

Katz et al, NeurIPS 2024
Cao et al, OWA@NeurIPS 2024
Tuisov et al, Arxiv 2024
Correa et al, NeurIPS 2025

Silver et al, AAAI 2024
Hodel, BSc Thesis 2024
Stein et al, Arxiv 2025

Oswald et al, ICAPS 2024

Guan et al, NeurIPS 2023
Gestrin et al, Arxiv 2024

Huang et al, AAAI 2025
Tantakoun et al, ACL Findings 2025

Action/plan
Observation

Action/plan

Observation

Action/plan

ObservationLLM as search components generator
Search

components
code (black
box model)

Search
algorithm

Policy code
(domain-specific

planner)

LLM as policy generator

High level
planning model

(PDDL)

LLM as PDDL generator

Off-the-shelf
planner

21

Links and references

Git with references

AI Planning
Community Git

ICAPS conference

ICAPS 2026 Summer School
June 22-25, 2026

Tutorial link:
• https://planning-llm-era.github.io/, Planning in the Era

of Language Models, NeurIPS 2025
• https://aiplanning-tutorial.github.io/, AI Planning:

Theory and Practice, AAAI 2022
• https://mp-tutorial.github.io/, Finding multiple plans

for classical planning problems, ICAPS 2024
Fi

Planners available on github:
https://github.com/aibasel/downward
https://github.com/IBM/forbiditerative
https://github.com/IBM/kstar
https://github.com/speckdavid/symk

22

https://planning-llm-era.github.io/
https://planning-llm-era.github.io/
https://planning-llm-era.github.io/
https://planning-llm-era.github.io/
https://planning-llm-era.github.io/
https://planning-llm-era.github.io/
https://aiplanning-tutorial.github.io/
https://aiplanning-tutorial.github.io/
https://aiplanning-tutorial.github.io/
https://aiplanning-tutorial.github.io/
https://mp-tutorial.github.io/
https://mp-tutorial.github.io/
https://mp-tutorial.github.io/
https://mp-tutorial.github.io/
https://github.com/IBM/forbiditerative
https://github.com/IBM/forbiditerative
https://github.com/IBM/kstar
https://github.com/speckdavid/symk

