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Abstract

The limitations of direct planning capabilities from Large
Language Models (LLMs) have drawn interest in integrating
neuro-symbolic approaches within the Automated Planning
(AP) and Natural Language Processing (NLP) communities.
With the proliferation of related techniques to convert NL to
PDDL, we are seeing an ever-increasing set of related meth-
ods. To bring them together under a single computational
umbrella, we created a unified framework that encompasses
the vast majority of existing methods: L2P, 1 an open-source
Python library developed to assist users in creating their own
frameworks. We hope to see the L2P framework adopted by
the community as a repository of existing advancements in
LLM model acquisition and relevant papers, ensuring that
users have access to the most current research and tools under
a common framework for fair comparison.

1 Introduction
The advent of Large Language Models (LLMs) has marked
a significant paradigm shift in AI, sparking claims regard-
ing emergent reasoning capabilities within LLMs (Wei et al.
2022) and their potential integration into autonomous plan-
ning modules for agents (Pallagani et al. 2023). While
LLMs, due to the prowess of distributed representation and
learning, excel at System I tasks, planning—an essential as-
pect of System II cognition (Daniel 2017)—remains to be
a significant bottleneck (Bengio 2020). Furthermore, LLMs
face challenges with long-term planning and reasoning, of-
ten producing unreliable plans (Valmeekam, Stechly, and
Kambhampati 2024, Pallagani et al. 2023, Momennejad
et al. 2023), frequently failing to account for effects and re-
quirements of actions as they scale (Stechly, Valmeekam,
and Kambhampati 2024), and their performance degrades
with self-iterative feedback (Stechly, Marquez, and Kamb-
hampati 2023; Valmeekam, Marquez, and Kambhampati
2023; Huang et al. 2024).

Acknowledging the evident challenges that LLMs face in
direct planning, Automated Planning (AP), or AI planning,
presents a promising alternative with its ability to gener-
ate robust, optimal plans through logical and computational
methods. LLMs, meanwhile, excel at extracting and refining

1The code will be made publicly available at [URL-
Placeholder].

classical planning models via Natural Language (NL), leav-
ing the plan generation to classical planners and heuristic
algorithms. Currently, researchers are exploring the nuances
of varying pipelines to balance the effectiveness and limita-
tions of LLMs in building such neuro-symbolic frameworks
(Mahdavi et al. 2024; Guan et al. 2023; Gestrin, Kuhlmann,
and Seipp 2024), specifically, encoded in the Planning Do-
main Definition Language (PDDL) McDermott et al. 1998.

To consolidate these under a cohesive computational
framework—and to go beyond the conceptual connections
found in previous frameworks—we developed an integrated
system incorporating most current techniques: Language-
to-Plan (L2P). L2P plays a crucial role in advancing the
NLP and AI planning fields by providing a structured, uni-
fied approach to translating natural language into formal
planning language (PDDL). Its importance lies in how it
simplifies and organizes the diverse techniques developed,
offering a single framework that makes these approaches
more accessible and comparable. L2P offers three major
benefits:

(i) Comprehensive Tool Suite: users can easily plug in
various LLMs for streamlined extraction experiments
with our extensive collection of PDDL extraction and re-
fining tools.

(ii) Modular Design: facilitates flexible PDDL generation,
allowing users to explore prompting styles and create
customized pipelines.

(iii) Autonomous Capability: supports a fully autonomous
pipeline, reducing the need for manual authoring.

Our primary motivation stems from the lack of stan-
dardized frameworks in the field of PDDL modelling with
LLMs. Existing works often employ disparate approaches,
making meaningful comparisons difficult. Our goal is to
develop a cohesive Python library that supports users in
creating PDDL models using LLMs. This library will be
flexible enough for users to design their own architectures
while adhering to a standardized format that ensures con-
sistency and enables effective comparative studies across
different frameworks.

Why PDDL? The scope of this library is limited to PDDL
for various reasons: its standardization and widespread use
in the planning community strongly facilitate sharing and



benchmarking. This, in turn, allows a wide selection of tools
to support validation and refinement of models. Addition-
ally, due to its flexibility, clear syntax, and declarative na-
ture, it aligns well with LLMs’ capabilities to translate de-
scriptions into PDDL constructs, as all modern LLMs have
likely encountered PDDL code in their training corpus.

2 Language-to-Plan (L2P) Framework
A standout feature of this library is its flexibility, enabling
users to seamlessly switch between different LLM engines
for experimentation within their own frameworks. Users can
incorporate their preferred methods from L2P for extract-
ing PDDL model components, tailoring the process to their
specific needs. Additionally, the library offers extensive cus-
tomization options for prompts and assumptions, allowing
users to adapt LLM interactions to suit their unique require-
ments.

2.1 Builder Classes

The Builder classes contain functions for extracting spe-
cific components found in PDDL usage. Specifically, it al-
lows the user to prompt the LLM to generate the domain
types, predicates, and actions—including their respective
parameters, preconditions, and effects. L2P also supports
task specification, which includes objects, initial, and goal
states that correspond to a given domain. Inspired by (Guan
et al. 2023) and (Gestrin, Kuhlmann, and Seipp 2024), L2P
not only includes PDDL builder classes but also features a
customized Feedback Builder class that incorporates both
LLM-generated feedback and human input, or, optionally,
a combination of both. This system refines the LLM’s re-
sponses in cases of unsatisfactory results. Additionally, L2P
comes with a custom syntax validation tool that checks for
common Python or PDDL syntax errors, leveraging this
feedback to further enhance the accuracy of the generated
responses. Appendix C—Figure 8 showcases an LLM giv-
ing feedback to refine a PDDL problem specification.

2.2 Template Customization

LLMs have shown that their outputs are significantly sen-
sitive to prompting—raising questions about whether they
are better off functioning as machine translators or gen-
erators. Liu et al. (2023) demonstrate that highly explicit
descriptions improve translation accuracy, while (Gestrin,
Kuhlmann, and Seipp 2024) and (Smirnov et al. 2024) lever-
age minimal descriptions, relying on LLMs’ internal world
knowledge to enrich outputs. Given a structured formatting
template for LLM output, L2P enables users to generate
domain-agnostic environments with their own customized
prompts, ensuring outputs can be properly and easily ex-
tracted and mapped into Python types. Specifically, users
can swap out different roles and LLM prompt techniques
(i.e. CoT) to solve the problem. Figure 1 demonstrates an
example of how one might create a simple Blocksworld do-
main predicate. Further information can be found on the L2P
documentation page.

1 [ROLE]: Define the PDDL predicates of an AI

agent's actions. End your final answers

starting with "### New Predicates" with

''' ''' comment blocks as so:

2
3 ### New Predicates

4 ```
5 - (predicate_name_1 ?t1 - type_1 ?t2 -

type_2): 'predicate_description'

6 - (predicate_name_2 ?t3 - type_3 ?t4 -

type_4): 'predicate_description'

7 ```
8 ------------------------------------------------

9 [TECHNIQUE]: CoT, few-shot, etc.

10 ------------------------------------------------

11 [TASK]:

12 ## Domain

13 {domain_desc}

14
15 ## Natural Language Actions

16 {nl_actions}

17
18 ## Types

19 {types}

Figure 1: Example core template structure to prompt LLM
PDDL predicate generation.

3 Demonstration Overview
This demonstration overview showcases L2P usage and fur-
ther details how users can curate these tools to create their
own frameworks. Appendix C—Figure 7 is a complete ex-
ample of L2P creating a PDDL task specification. The LLM
output is found below (Figure 2).

1 ### LLM OUTPUT (GPT-4o)
2 (define
3 (problem blocksworld_problem_01)
4 (:domain blocksworld_problem)
5 (:objects
6 blue_block - object
7 red_block - object
8 yellow_block - object
9 green_block - object

10 )
11 (:init
12 (on_top blue_block red_block)
13 (on_top red_block yellow_block)
14 (on_table yellow_block)
15 (on_table green_block)
16 (clear blue_block)
17 (clear green_block)
18 (empty arm)
19 )
20 (:goal
21 (and
22 (on_top red_block green_block)
23 )
24 )
25 )

Figure 2: L2P usage - generating simple PDDL task specifi-
cation on simple Blocksworld domain



1 ### LLM OUTPUT

2 My concrete suggestions are the following:

3 - Add the predicate to indicate that the red

block is not clear:

4 - (clear red_block) should be removed from

the initial state since the red block

is covered by the blue block.

5
6 Final output should reflect this change in

the initial state:

7 ```
8 (clear blue_block): blue block is clear

9 (clear yellow_block): yellow block is clear

10 (clear green_block): green block is clear

11 ```
12 Overall, the feedback is: Yes, the initial

state needs to reflect that the red block

is not clear.

Figure 3: Example of feedback given by LLM on a PDDL
problem specification on the Blocksworld domain.

3.1 Paper Reconstructions
L2P is capable of recreating and encompassing previous
frameworks for converting natural language to PDDL, serv-
ing as a comprehensive foundation that integrates past ap-
proaches. The L2P GitHub contains multiple paper recon-
structions, such as NL2Plan (Gestrin, Kuhlmann, and Seipp
2024) and LLM+P (Liu et al. 2023), as examples of how
existing methods can be implemented and compared within
a unified system, demonstrating L2P’s flexibility and effec-
tiveness in standardizing diverse NL-to-PDDL techniques.
An example of Guan et al. (2023) “action-by-action” algo-
rithm can be found in Figure 4; action and predicate LLM
output can be found in Appendix C—Figure 9. We hope the
community embraces the L2P framework as a repository of
existing advancements in LLM model acquisition and rele-
vant papers, ensuring that users have access to the most cur-
rent research and tools under a common framework for fair
comparison.

4 Collaborative Feature and Outlook
L2P automates the conversion of natural language into
PDDL, offering researchers a unified framework to evalu-
ate methods and foster rigorous experimentation and bench-
marking. While the library currently supports only basic
PDDL extraction tools for fully observable deterministic
planning, it does not yet address conditional, temporal, or
numeric planning. We aim to expand L2P’s capabilities with
the help of the Planning community, driving research into
the challenges LLMs face in these areas. We invite the com-
munity to adopt this library, integrate it into their projects,
and provide valuable feedback through issue reporting or
feature suggestions. These contributions will refine and ex-
pand L2P, building a repertoire of standardized benchmarks
and methodologies, enabling fair comparisons, and fostering
the creation of high-impact research and applications.

1 import os
2 from l2p import *
3
4 def run_aba_alg(model: LLM, action_model, domain_desc,
5 hierarchy, prompt, max_iter: int=2
6 ) -> tuple[list[Predicate], list[Action]]:
7
8 actions = list(action_model.keys())
9 pred_list = []

10
11 for _ in range(max_iter):
12 action_list = []
13 # iterate each action spec. + new predicates
14 for _, action in enumerate(actions):
15 if len(pred_list) == 0:
16 prompt = prompt.replace('{predicates}',
17 '\nNo predicate has been defined yet')
18 else:
19 res = ""
20 for i, p in enumerate(pred_list):
21 res += f'\n{i + 1}. {p["raw"]}'
22 prompt = prompt.replace('{predicates}', res)
23 # extract pddl action and predicates (L2P)
24 pddl_action, new_preds, response = (
25 builder.extract_pddl_action(
26 model=model,
27 domain_desc=domain_desc,
28 prompt_template=prompt,
29 action_name=action,
30 action_desc=action_model[action]['desc'],
31 action_list=action_list,
32 predicates=pred_list,
33 types=hierarchy["hierarchy"]
34 )
35 )
36 # format + add extracted actions and predicates
37 new_preds = parse_new_predicates(response)
38 pred_list.extend(new_preds)
39 action_list.append(pddl_action)
40 pred_list = prune_predicates(pred_list,action_list)
41
42 return pred_list, action_list
43
44 if __name__ == "__main__":
45 builder = DomainBuilder() # create domain build class
46 # retrieve prompt information
47 base_path='paper_reconstructions/llm+dm/prompts/'
48 action_model=load_file(
49 f'{base_path}action_model.json')
50 domain_desc=load_file(
51 f'{base_path}domain_desc.txt')
52 hier=load_file(
53 f'{base_path}hierarchy_requirements.json')
54 prompt=load_file(f'{base_path}pddl_prompt.txt')
55
56 # initialise LLM engine (OpenAI in this case)
57 api_key = os.environ.get('OPENAI_API_KEY')
58 llm = OPENAI(model="gpt-4o-mini", api_key=api_key)
59
60 # run "action-by-action" algorithm
61 pred, action = run_aba_alg(model=llm, action_model,
62 domain_desc, hier, prompt)

Figure 4: L2P code reconstruction of “action-by-action al-
gorithm” (Guan et al. 2023). This iterates through each ac-
tion description and generates its PDDL specifications while
maintaining a dynamically generating predicate list.
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A Paper Overview

This section contains an overview of the core framework papers found within Leveraging Large Language Models for Auto-
mated Planning and Model Construction: A Survey. The table provides a structured distinction between the papers based on
their methodological approaches and specific areas of focus, such as what aspect are they modelling, prompting style/weight,
and feedback mechanism. Additionally, it highlights papers already covered by the L2P library, ensuring users have quick
access to resources that have been implemented or analyzed in detail. These covered papers will be included in our GitHub
repository for easy reference. The distinction in the table also aims to emphasize gaps in the literature, such as under explored
techniques or novel applications of NL-PDDL through LLMs, paving the way for future research. To maintain relevance, we
plan to keep an updated installment of all NL-PDDL works leveraging LLMs, ensuring this survey evolves alongside the field.

Framework Task Domain NHI Prompt Feedback
(Collins et al. 2022) ✓ × ✓ Medium (Few-shot) None
⋆(Xie et al. 2023) ✓ × ✓ Medium (Few-shot) None
(Lyu et al. 2023) ✓ × ✓ Light (CoT) None

(Grover and Mohan 2024) ✓ × ✓ Medium (Few-shot) Env.
(Lin et al. 2023) ✓ × ✓ Medium (Few-shot) LLM+Env.
⋆(Liu et al. 2023) ✓ × ✓ Heavy (Few-shot) None
(Birr et al. 2024) ✓ × ✓ Light (CoT) External tool

(Agarwal and Sreepathy 2024) ✓ × × Medium None
⋆(Dagan, Keller, and Lascarides 2023) ✓ × ✓ Medium LLM + Env.

(Zhang et al. 2024a) ✓ × ✓ Medium (Few-shot) LLM
(Liu et al. 2024c) ✓ × × Extended Scene Graph Env.

(Singh et al. 2024) ✓ × × Light LLM+Deviation
(Izquierdo-Badiola et al. 2024) ✓ × ✓ Light LLM

(Singh, Traum, and Thomason 2024) ✓ × ✓ Medium (One-shot+) LLM Helper Agent
(Zhang et al. 2024c) ✓ × ✓ Light Fast Downward + External Tool
(Oates et al. 2024) × ✓ × Medium (Few-shot, in-context) Human

⋆(Zhang et al. 2024b) × ✓ × Medium (Few-shot) None
⋆(Guan et al. 2023) × ✓ × Light Human

(Huang, Lipovetzky, and Cohn 2024) × ✓ ✓ Light Sentence Encoder Filter
(Wong et al. 2023) × ✓ ✓ Medium (Few-shot) None
(Liu et al. 2024a) × ✓ × Heavy Human
(Ding et al. 2023) × ✓ ✓ Light LLM
(Chen et al. 2024) × ✓ ✓ Medium Env.
(Kelly et al. 2023) ✓ ✓ ✓ Medium (One-shot+) External tool

⋆(Smirnov et al. 2024) ✓ ✓ ✓ Light LLM
(Liu et al. 2024b) ✓ ✓ ✓ Medium (One-shot+) None
(Zhou et al. 2023) ✓ ✓ ✓ Heavy (Few-shot) None

(Ye et al. 2024) ✓ ✓ × Heavy Human
(Han et al. 2024) ✓ ✓ × Light Human

⋆(Gestrin, Kuhlmann, and Seipp 2024) ✓ ✓ ✓ Medium (Few-shot) LLM + Human
(da Silva et al. 2024) ✓ ✓ ✓ Light LLM

⋆(Mahdavi et al. 2024) ✓ ✓ ✓ Light LLM + Env.
(Sakib and Sun 2024) ✓ ✓ ✓ Light None

(Ying et al. 2023) ✓ ✓ ✓ Medium (Few-shot) Syntax rejection filter

Figure 5: Summary of frameworks found in Leveraging Large Language Models for Automated Planning and Model
Construction: A Survey. NHI = No Human Intervention. ⋆Papers reconstructed by L2P



B Automated Planning Background – Additional Information

Automated Planning is a specialized field within AI and NLP that can be challenging for those unfamiliar with its principles. To
make it more accessible, we provide background information to bridge the knowledge gap. A key tool in classical planning is
the Planning Domain Definition Language (PDDL), which models planning problems and domains. We illustrate its concepts
with the Blocksworld problem, where blocks must be stacked in a specific order using actions like picking up, unstacking, and
placing blocks, all while respecting constraints like moving only one block at a time or not disturbing stacked blocks.

The given problem can be encoded in PDDL. Demonstrated below is the PDDL domain file:

1 (define (domain blocksworld)
2 (:requirements :strips)
3 (:predicates (clear ?x) (on-table ?x) (arm-empty) (holding ?x) (on ?x ?y))
4 (:action putdown
5 :parameters (?ob)
6 :precondition (holding ?ob)
7 :effect (and (clear ?ob) (arm-empty) (on-table ?ob) (not (holding ?ob)))
8 )
9 (:action pickup

10 :parameters (?ob)
11 :precondition (and (clear ?ob) (on-table ?ob) (arm-empty))
12 :effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob)) (not

(arm-empty)))
13 )
14 (:action stack
15 :parameters (?ob ?underob)
16 :precondition (and (clear ?underob) (holding ?ob))
17 :effect (and (arm-empty) (clear ?ob) (on ?ob ?underob) (not (clear ?underob))

(not (holding ?ob)))
18 )
19 (:action unstack
20 :parameters (?ob ?underob)
21 :precondition (and (on ?ob ?underob) (clear ?ob) (arm-empty))
22 :effect (and (holding ?ob) (clear ?underob) (not (on ?ob ?underob)) (not (clear

?ob)) (not (arm-empty)))))

Predicates define relationships or properties that can be true or false, such as (on ?x ?y) for block ?x on ?y, (ontable
?x) for ?x on the table, (clear ?x) for ?x having nothing on top, and (holding ?x) for the robot holding ?x. Actions
describe state changes. For instance, (pick-up) contains the parameter(s) block ?x, preconditions requiring (clear ?x)
and (ontable ?x), and effects updating the state to reflect the robot holding ?x, which is no longer on the table and clear.

The following is the PDDL problem/task file:

1 (define (problem blocksworld-problem)
2 (:domain blocksworld)
3 (:objects A B C) ; Blocks
4 (:init (ontable A) (ontable B) (on C A) (clear B) (clear C)) ; Initial state
5 (:goal (and (on A B) (on B C)))) ; Goal state

Objects represent the entities involved, such as blocks A, B, and C. The initial state defines the starting arrangement, where
blocks A and B are on the table, block C is on A, and both B and C are clear. The goal state specifies the desired configuration,
where block A is stacked on B, and block B is stacked on C.

Given the above PDDL domain and problem definitions, a classical planner might generate the following (optimal) plan:

1 Unstack C from A
2 Put C on table
3 Pick up A
4 Stack A on B
5 Pick up B
6 Stack B on C



C L2P Usage Example
Below are example usages using our L2P library. Full documentation can be found on our website.

1 import os
2 from l2p import *
3

4 domain_builder = DomainBuilder() # initialize Domain Builder class
5

6 # REPLACE WITH OWN API KEY
7 api_key = os.environ.get('OPENAI_API_KEY')
8 llm = OPENAI(model="gpt-4o-mini", api_key=api_key)
9

10 # retrieve prompt information
11 base_path='tests/usage/prompts/domain/'
12 domain_desc = load_file(f'{base_path}blocksworld_domain.txt')
13 extract_predicates_prompt = load_file(f'{base_path}extract_predicates.txt')
14 types = load_file(f'{base_path}types.json')
15 action = load_file(f'{base_path}action.json')
16

17 # extract predicates via LLM
18 predicates, llm_output = domain_builder.extract_predicates(
19 model=llm,
20 domain_desc=domain_desc,
21 prompt_template=extract_predicates_prompt,
22 types=types,
23 nl_actions={action['action_name']: action['action_desc']}
24 )
25

26 # format key info into PDDL strings
27 predicate_str = "\n".join([pred["clean"].replace(":", " ; ") for pred in predicates])
28

29 print(f"PDDL domain predicates:\n{predicate_str}")
30

31 -------------------------------------------------------------------------------------
32

33 ### OUTPUT
34 (holding ?a - arm ?b - block) ; true if the arm ?a is holding the block ?b
35 (on_top ?b1 - block ?b2 - block) ; true if the block ?b1 is on top of the block ?b2
36 (clear ?b - block) ; true if the block ?b is clear (no block on top of it)
37 (on_table ?b - block) ; true if the block ?b is on the table
38 (empty ?a - arm) ; true if the arm ?a is empty (not holding any block)

Figure 6: L2P usage - generating simple PDDL predicates



1 import os
2 from l2p import *
3

4 task_builder = TaskBuilder() # initialize Task Builder class
5

6 # REPLACE WITH OWN API KEY
7 api_key = os.environ.get('OPENAI_API_KEY')
8 llm = OPENAI(model="gpt-4o-mini", api_key=api_key)
9

10 # load in assumptions
11 problem_desc = load_file(r'tests/usage/prompts/problem/blocksworld_problem.txt')
12 extract_task_prompt = load_file(r'tests/usage/prompts/problem/extract_task.txt')
13 types = load_file(r'tests/usage/prompts/domain/types.json')
14 predicates_json = load_file(r'tests/usage/prompts/domain/predicates.json')
15 predicates: List[Predicate] = [Predicate(**item) for item in predicates_json]
16

17 # extract PDDL task specifications via LLM
18 objects, initial_states, goal_states, llm_response = task_builder.extract_task(
19 model=llm,
20 problem_desc=problem_desc,
21 prompt_template=extract_task_prompt,
22 types=types,
23 predicates=predicates
24 )
25

26 # format key info into PDDL strings
27 objects_str = task_builder.format_objects(objects)
28 initial_str = task_builder.format_initial(initial_states)
29 goal_str = task_builder.format_goal(goal_states)
30

31 # generate task file
32 pddl_problem = task_builder.generate_task(
33 domain="blocksworld",
34 problem="blocksworld_problem",
35 objects=objects_str,
36 initial=initial_str,
37 goal=goal_str)
38

39 print(f"### LLM OUTPUT:\n {pddl_problem}")
40 -------------------------------------------------------------------------------------
41 ### LLM OUTPUT
42 (define
43 (problem blocksworld_problem)
44 (:domain blocksworld)
45 (:objects
46 blue_block - object
47 red_block - object
48 yellow_block - object
49 green_block - object
50 )
51 (:init
52 (on_top blue_block red_block)
53 (on_top red_block yellow_block)
54 (on_table yellow_block)
55 (on_table green_block)
56 (clear blue_block)
57 (clear yellow_block)
58 (clear green_block)
59 )
60 (:goal
61 (and
62 (on_top red_block green_block)
63 )
64 )
65 )

Figure 7: L2P usage - generating simple PDDL task specification



1 import os

2 from l2p import *
3

4 feedback_builder = FeedbackBuilder()

5

6 api_key = os.environ.get('OPENAI_API_KEY')

7 llm = OPENAI(model="gpt-4o-mini", api_key=api_key)

8

9 problem_desc = load_file(r'tests/usage/prompts/problem/blocksworld_problem.txt')

10 types = load_file(r'tests/usage/prompts/domain/types.json')

11 feedback_template = load_file(r'tests/usage/prompts/problem/feedback.txt')

12 predicates_json = load_file(r'tests/usage/prompts/domain/predicates.json')

13 predicates: List[Predicate] = [Predicate(**item) for item in predicates_json]

14 llm_response = load_file(r'tests/usage/prompts/domain/llm_output_task.txt')

15

16 objects, initial, goal, feedback_response = feedback_builder.task_feedback(

17 model=llm,

18 problem_desc=problem_desc,

19 feedback_template=feedback_template,

20 feedback_type="llm",

21 predicates=predicates,

22 types=types,

23 llm_response=llm_response)

24

25 print("FEEDBACK:\n", feedback_response)

26 -------------------------------------------------------------------------------------

27 ### LLM OUTPUT

28 1. Are any necessary objects missing?

29 All necessary objects are included based on the problem description. So: No.

30

31 2. Are any unnecessary objects included?

32 All objects included are relevant to the problem. Hence: No.

33

34 3. Are any objects defined with the wrong type?

35 All objects are correctly defined as "object". Therefore: No.

36

37 4. Are any unnecessary or incorrect predicates declared?

38 All predicates used in the initial state are relevant and correctly applied. Thus: No.

39

40 5. Are any needed or expected predicates missing from the initial state?

41 The initial state is missing the predicate for the red block being clear. Since the red block is covered by

42 the blue block, it should not be clear. Therefore: Yes.

43

44 6. Is anything missing from the goal state?

45 The goal state accurately reflects the desired outcome of having the red block on top of the green block. So: No.

46

47 7. Is anything unnecessary included in the goal description?

48 The goal description is concise and only includes what is necessary. Therefore: No.

49

50 8. Should any predicate be used in a symmetrical manner?

51 The predicates used do not require symmetry as they are directional in nature. So: No.

52

53 My concrete suggestions are the following:

54 - Add the predicate to indicate that the red block is not clear:

55 - (clear red_block) should be removed from the initial state since the red block is covered by the blue block.

56

57 Final output should reflect this change in the initial state:

58 ```
59 (clear blue_block): blue block is clear

60 (clear yellow_block): yellow block is clear

61 (clear green_block): green block is clear

62 ```
63 Overall, the feedback is: Yes, the initial state needs to reflect that the red block is not clear.

Figure 8: L2P usage - generating LLM-feedback on task specification



## PREDICATES

{'name': 'truck-at',

'desc': 'true if the truck ?t is currently at location ?l',

'raw': '(truck-at ?t - truck ?l - location): true if the truck ?t is currently at location ?l',

'params': OrderedDict([('?t', 'truck'), ('?l', 'location')]),

'clean': '(truck-at ?t - truck ?l - location): true if the truck ?t is currently at location ?l'}

{'name': 'package-at',

'desc': 'true if the package ?p is currently at location ?l',

'raw': '(package-at ?p - package ?l - location): true if the package ?p is currently at location ?l',

'params': OrderedDict([('?p', 'package'), ('?l', 'location')]),

'clean': '(package-at ?p - package ?l - location): true if the package ?p is currently at location ?l'}

{'name': 'truck-holding',

'desc': 'true if the truck ?t is currently holding the package ?p',

'raw': '(truck-holding ?t - truck ?p - package): true if the truck ?t is currently holding the package ?p',

'params': OrderedDict([('?t', 'truck'), ('?p', 'package')]),

'clean': '(truck-holding ?t - truck ?p - package): true if the truck ?t is currently holding the package ?p'}

{'name': 'truck-has-space',

'desc': 'true if the truck ?t has space to load more packages',

'raw': '(truck-has-space ?t - truck): true if the truck ?t has space to load more packages',

'params': OrderedDict([('?t', 'truck')]),

'clean': '(truck-has-space ?t - truck): true if the truck ?t has space to load more packages'}

{'name': 'plane-at',

'desc': 'true if the airplane ?a is located at location ?l',

'raw': '(plane-at ?a - plane ?l - location): true if the airplane ?a is located at location ?l',

'params': OrderedDict([('?a', 'plane'), ('?l', 'location')]),

'clean': '(plane-at ?a - plane ?l - location): true if the airplane ?a is located at location ?l'}

{'name': 'plane-holding',

'desc': 'true if the airplane ?a is currently holding the package ?p',

'raw': '(plane-holding ?a - plane ?p - package): true if the airplane ?a is currently holding package ?p',

'params': OrderedDict([('?a', 'plane'), ('?p', 'package')]),

'clean': '(plane-holding ?a - plane ?p - package): true if the airplane ?a is currently holding package ?p'}

{'name': 'connected-locations',

'desc': 'true if location ?l1 is directly connected to location ?l2 in city ?c',

'raw': '(connected-locations ?l1 - location ?l2 - location ?c - city): ?l1 is connected to ?l2 in city ?c',

'params': OrderedDict([('?l1', 'location'), ('?l2', 'location'), ('?c', 'city')]),

'clean': '(connected-locations ?l1 - location ?l2 - location ?c - city): ?l1 is connected to ?l2 in city ?c'}

## ACTIONS

{'name': 'load_truck', 'parameters': OrderedDict([('?p', 'package'), ('?t', 'truck'), ('?l', 'location')]),

'preconditions': '(and\n (truck-at ?t ?l)\n (package-at ?p ?l)\n (truck-has-space ?t)\n)',

'effects': '(and\n (not (package-at ?p ?l))\n (truck-holding ?t ?p)\n)'}

{'name': 'unload_truck', 'parameters': OrderedDict([('?p', 'package'), ('?t', 'truck'), ('?l', 'location')]),

'preconditions': '(and\n (truck-at ?t ?l)\n (truck-holding ?t ?p)\n)',

'effects': '(and\n (not (truck-holding ?t ?p))\n (package-at ?p ?l)\n)'}

{'name': 'load_airplane', 'parameters': OrderedDict([('?p', 'package'), ('?a', 'plane')]),

'preconditions': '(and\n (package-at ?p ?l)\n (plane-at ?a ?l)\n)',

'effects': '(and\n (not (package-at ?p ?l))\n (plane-holding ?a ?p)\n)'}

{'name': 'unload_airplane', 'parameters': OrderedDict([('?p', 'package'), ('?a', 'plane'), ('?l', 'location')]),

'preconditions': '(and\n (plane-at ?a ?l)\n (plane-holding ?a ?p)\n)',

'effects': '(and\n (not (plane-holding ?a ?p))\n (package-at ?p ?l)\n)'}

{'name': 'drive_truck',

'parameters': OrderedDict([('?t', 'truck'), ('?l1', 'location'), ('?l2', 'location'), ('?c', 'city')]),

'preconditions': '(and\n (truck-at ?t ?l1)\n (connected-locations ?l1 ?l2 ?c)\n)',

'effects': '(and\n (not (truck-at ?t ?l1))\n (truck-at ?t ?l2)\n)'}

{'name': 'fly_airplane',

'parameters': OrderedDict([('?a', 'plane'), ('?l1', 'location'), ('?l2', 'location'), ('?c', 'city')]),

'preconditions': '(and\n (plane-at ?a ?l1)\n (connected-locations ?l1 ?l2 ?c)\n)',

'effects': '(and\n (not (plane-at ?a ?l1))\n (plane-at ?a ?l2)\n)'}

Figure 9: L2P formatted predicate and actions output from LLM (action-by-action algorithm) of Logistics domain.


